驰网飞飞 发表于 2025-10-25 16:52:40

AI智能体搭建实战教程之DeepSeek的Ollama部署FastAPI封装调用

前言
DeepSeek的横空出世引爆了AI大模型的势如破竹之势,在深度进入AI领域之前,对DeepSeek有个初步的了解和使用体验也至关重要,本文将结合Ollama实现本地化部署并生成开放接口,经由FastAPI调用实现!

一、Ollama的安装与路径迁移
1、打开Ollama官网



2、点击Download,按需选中要下载的版本,本文以Windows版本为例;



3、下载完成后,双击OllamaSetup.exe直接运行后点击Install开始安装,注意此处无法选择安装目录,如果需要修改目录需手动迁移;



4、安装完成后,打开cmd,运行ollama -v即可查看安装的Ollama版本信息



Ollama默认安装在C盘中:C:\Users\du\AppData\Local\Ollama,如果考虑到C盘空间需迁移目录,需手动迁移到指定目录;

5、目录迁移前先查看进程中Ollama是否正正运行,如在运行中需先结束进程,避免文件拷贝失败;



6、将整个文件夹直接剪切到新的路径,如D:\AIWorld\Ollama



7、路径迁移后需修改环境变量配置,打开环境变量



8、依次打开【环境变量】中的【Path】变量,直接在旧的配置上编辑或增加新的路径;



9、安装的路径配置完毕,还需新建或者修改系统变量中的OLLAMA_MODELS变量,将变量值改为目标路径



至此,Ollama安装路径迁移完毕,重新运行ollama.exe即可启动程序;

二、Ollama的使用
访问Ollama的官方模型库,library (ollama.com),选择需要的模型



运行指定命令下载模型,如下载deepseek-r1:1.5b 模型:
ollama pull deepseek-r1:1.5b


下载完成后,运行该模型:
ollama run deepseek-r1:1.5b


查看Ollama中正正运行的模型:
ollama ps


模型已经运行成功,并可进行对话,经过思考后输出反馈,至此,模型的搭建成功并正常运行!

三、Ollama的API调用
ollama成功运行后,会提供一个REST API接口地址,默认运行在11434端口,http://localhost:11434/api/generate,调用方式参考如下:
import requests
# 调用ollama,指定模型和本地部署后api地址
def query_ollama(prompt, model="deepseek-r1:1.5b"):
    url = "http://localhost:11434/api/generate"
    data = {
      "model": model,
      "prompt": prompt,
      "stream": False
    }
    response = requests.post(url, json=data)
    if response.status_code == 200:
      return response.json()["response"]
    else:
      raise Exception(f"API 请求失败: {response.text}")
# 使用示例
response = query_ollama("你好,你是什么大模型,请浓重介绍一下自己!")
print(response)
运行结果:
<think>
您好!我是由中国的深度求索(DeepSeek)公司开发的智能助手DeepSeek-R1。如您有任何任何问题,我会尽我所能为您提供帮助。
</think>
您好!我是由中国的深度求索(DeepSeek)公司开发的智能助手DeepSeek-R1。如您有任何任何问题,我会尽我所能为您提供帮助。
以上示例中结果为一次性输出,也可以调整为带有思考模式的逐字输出:
import requests
# 流模式输出结果内容
def query_ollama(prompt, model="deepseek-r1:1.5b", stream=False):
    url = "http://localhost:11434/api/generate"
    data = {
      "model": model,
      "prompt": prompt,
      "stream": stream
    }
    if stream:
      # 开始处理流式响应结果
      with requests.post(url, json=data, stream=True) as response:
            if response.status_code == 200:
                # 逐行打印结果内容
                for line in response.iter_lines(decode_unicode=True):
                  if line:
                        # Ollama流式返回每行是一个json字符串
                        try:
                            import json
                            obj = json.loads(line)
                            print(obj.get("response", ""), end="", flush=True)
                        except Exception as e:
                            print(f"解析流式响应出错: {e}")
            else:
                raise Exception(f"API 请求失败: {response.text}")
    else:
      response = requests.post(url, json=data)
      if response.status_code == 200:
            return response.json()["response"]
      else:
            raise Exception(f"API 请求失败: {response.text}")
# 使用示例
print("流式响应结果输出:")
query_ollama("你好,你是什么大模型,请隆重介绍一下自己", stream=True)
当本地的模型部署完毕后,可以使用FastAPI进行封装后提供给外部调用,主要注意接口地址和端口,以下配置路径没有特别限制,可自定义调整:
http://127.0.0.1:8000/api/aichat
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import requests
app = FastAPI()
# 定义请求模型
class ChatRequest(BaseModel):
    prompt: str
    model: str = "deepseek-r1:1.5b"
# 允许跨域请求(根据需要配置)
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"],
)
#此处画重点,外部访问的接口地址
@app.post("/api/aichat")
async def chat(request: ChatRequest):
    ollama_url = "http://localhost:11434/api/generate"
    data = {
      "model": request.model, #接口调用要传入的模型参数
      "prompt": request.prompt, #接口调用要传入的指令
      "stream": False
    }
    response = requests.post(ollama_url, json=data)
    if response.status_code == 200:
      return {"response": response.json()["response"]}
    else:
      return {"error": "Failed to get response from Ollama"}, 500
if __name__ == "__main__":
    import uvicorn
#外部调用时访问的端口
    uvicorn.run(app, host="0.0.0.0", port=8000)
运行以上代码后,出现以下提示,表示接口成功运行:
INFO:   Started server process
INFO:   Waiting for application startup.
INFO:   Application startup complete.
INFO:   Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)

可以使用接口测试工具Postman测试接口是否可以正常调用,输出的结果包含了思考部分和最终结果,可以实现推理到结果的过程:



如果不清楚Postman的使用,也可以通过Python测试:
import requests
response = requests.post(
    "http://localhost:8000/api/aichat",
    json={"model":"deepseek-r1:1.5b","prompt": "你好,请介绍一下你自己"}
)
print(response.json())
也会得到同样的输出结果:
{'response': '<think>\n\n</think>\n\n您好!我是由中国的深度求索(DeepSeek)公司开发的智能助手DeepSeek-R1。关于我以及我的能力,请参考官方文档或使用相关AI服务工具获取详细信息。'}
感谢您的阅读,服务器大本营-技术文章内容集合站,助您成为更专业的服务器管理员!
页: [1]
查看完整版本: AI智能体搭建实战教程之DeepSeek的Ollama部署FastAPI封装调用

点击直接加入[服务器大本营QQ频道]